Enhanced Adsorption Removal of Pb(II) and Cr(III) by Using Nickel Ferrite-Reduced Graphene Oxide Nanocomposite "2279
نویسندگان
چکیده
The heavy metals, such as Pb(II) and radioisotope Cr(III), in aqueous solutions are toxic even at trace levels and have caused adverse health impacts on human beings. Hence the removal of these heavy metals from the aqueous environment is of the utmost importance to protect biodiversity, hydrosphere ecosystems, and human beings. In this study, the reduced graphene oxide based inverse spinel nickel ferrite (rGONF) nanocomposite has been prepared and was utilized for the removal of Pb(II) and Cr(III) from aqueous solutions. The prepared rGONF has been confirmed by X-ray photoelectron (XPS) and Raman spectroscopy. The surface characteristics of rGONF were measured by scanning electron microscopy (SEM), High-Resolution Transmission Electron Microscope (HR-TEM), and Brunauer-Emmett-Teller (BET) surface analysis. The average particle size of rGONF was found to be 32.0 ± 2.0 nm. The surface site density for the specific surface area (Ns) of rGONF was found to be 0.00238 mol·g−1, which was higher than that of the graphene oxide (GO) and NiFe2O4, which was expected. The prepared rGONF has been successfully applied for the removal of Pb(II) and Cr(III) by batch mode. The batch adsorption studies concluded that the adsorption of Pb(II) and Cr(III) onto rGONF was rapid and the adsorption percentage was more than 99% for both metal ions. The adsorption isotherm results found that the adsorptive removal of both metal ions onto rGONF occurred through monolayer adsorption on a homogeneous surface of rGONF. The pH-edge adsorption results suggest the adsorption occurs through an inner-sphere surface complex, which is proved by 2-pKa-diffusion model fitting, where the pH-edge adsorption data was well fitted. The adsorption of metal ions increased with increasing temperature. The overall obtained results demonstrated that the rGONF was an effective adsorbent for Pb(II) and Cr(III) removal from wastewater.
منابع مشابه
Adsorptive Removal of Cr(VI) and Cu(II) Ions from Water Solution using Graphene Oxide-Manganese Ferrite (GMF) Nanomaterials
Chromium (Cr) and copper (Cu) are heavy metals known for their dangerous effect towards human health and could enter into human body mainly through ingestion. Over the years, different treatment methods have been used to eliminate heavy metal from raw water source and these include (co)precipitation, coagulation/flocculation, adsorption and ion- exchange. Nonetheless, adsorption is the most pro...
متن کاملDye removal from water by zinc ferrite-graphene oxide nanocomposite
In this work, zinc ferrite magnetic and zinc ferrite-graphene oxide nanocomposite were synthesized through a facile hydrothermal method and dye removal capability as an adsorbent were studied. Fourier transform infrared spectroscopy FT-IR, X-ray diffraction XRD and scanning electron microscopy SEM were used to characterize the synthesized nanocomposite. The UV-Vis results showed that the additi...
متن کاملبررسی میزان حذف کادمیوم از محلولهای آبی به وسیله نانوکامپوزیت نیکل فریت با پوشش اکسید تیتانیوم
Background and Objectives: Heavy metals are the most common contaminants in industrial wastewater. Cadmium is important due to its toxicity and harmful effects on human beings. The aim of this study was to evaluate the removal of cadmium from aqueous solutions by nickel ferrite-titanium oxide nanocomposite. Materials and Methods: This experimental – laboratory study was carried out in a ...
متن کاملRemoval of arsenic from aqueous solution by an adsorbent nickel ferrite-polyaniline nanocomposite
Nickel ferrite-polyaniline nanocomposite has been prepared and characterized using different techniques. The prepared nanocomposite is used as an adsorbent for the removal of arsenic from aqueous solution of sodium arsenite. The effect of temperature on the equilibrium adsorption of As(III) from aqueous solution on nanocomposite has been investigated. Effect of pH (2-12), contact time (0-70 min...
متن کاملRemoval of Toxic Cr(VI) Ions from Water Sample a Novel Magnetic Graphene Oxide Nanocomposite
This work describes the synthesis of a novel magnetic graphene oxide composite for removal of Cr(VI) ions. The synthesized nanosorbent were characterized with various techniques such as FT-IR, X-ray diffraction (XRD), scanning electron microscopy (SEM), elemental analysis and vibrating sample magnetometry (VSM). This material is illustrated to represent a viable sorbent for the removal of Cr(VI...
متن کامل